Friday, October 25, 2013

what are some reverse engineering techniques?

3d scanner structured light
 on Historic 6
3d scanner structured light image



Kevin7





Answer
Reverse engineering of machines
As computer-aided design (CAD) has become more popular, reverse engineering has become a viable method to create a 3D virtual model of an existing physical part for use in 3D CAD, CAM, CAE or other software. The reverse-engineering process involves measuring an object and then reconstructing it as a 3D model. The physical object can be measured using 3D scanning technologies like CMMs, laser scanners, structured light digitizers or computed tomography. The measured data alone, usually represented as a point cloud, lacks topological information and is therefore often processed and modeled into a more usable format such as a triangular-faced mesh, a set of NURBS surfaces or a CAD model.
Reverse engineering is also used by businesses to bring existing physical geometry into digital product development environments, to make a digital 3D record of their own products or to assess competitors' products. It is used to analyse, for instance, how a product works, what it does, and what components it consists of, estimate costs, and identify potential patent infringement, etc. Value engineering is a related activity also used by businesses. It involves de-constructing and analysing products, but the objective is to find opportunities for cost cutting.

Reverse engineering of software
The three main groups of software reverse engineering are
1. Analysis through observation of information exchange, most prevalent in protocol reverse engineering, which involves using bus analyzers and packet sniffers, for example, for accessing a computer bus or computer network connection and revealing the traffic data thereon. Bus or network behaviour can then be analyzed to produce a stand-alone implementation that mimics that behaviour. This is especially useful for reverse engineering device drivers. Sometimes, reverse engineering on embedded systems is greatly assisted by tools deliberately introduced by the manufacturer, such as JTAG ports or other debugging means. In Microsoft Windows, low-level debuggers such as SoftICE are popular.
2. Disassembly using a disassembler, meaning the raw machine language of the program is read and understood in its own terms, only with the aid of machine-language mnemonics. This works on any computer program but can take quite some time, especially for someone not used to machine code. The Interactive Disassembler is a particularly popular tool.
3. Decompilation using a decompiler, a process that tries, with varying results, to recreate the source code in some high-level language for a program only available in machine code or bytecode.

Reverse engineering of integrated circuits/smart cards
Reverse engineering is an invasive and destructive form of analyzing a smart card. The attacker grinds away layer by layer of the smart card and takes pictures with an electron microscope. With this technique, it is possible to reveal the complete hardware and software part of the smart card. The major problem for the attacker is to bring everything into the right order to find out how everything works. Engineers try to hide keys and operations by mixing up memory positions, for example, busscrambling. In some cases, it is even possible to attach a probe to measure voltages while the smart card is still operational. Engineers employ sensors to detect and prevent this attack. This attack is not very common because it requires a large investment in effort and special equipment that is generally only available to large chip manufacturers. Furthermore, the payoff from this attack is low since other security techniques are often employed such as shadow accounts.
http://en.wikipedia.org/wiki/Reverse_engineering

tell me the difference :)?




I AM VIETN


Between normal X-ray technology and Computed Tomography used in hospital , especially about Computer Function of CT
thanks
------------------------------------------------------------------------------------------
Small suggestion :)
Are you having blog , could you invite me as your friend :)



Answer
Standard x-rays are simple images similar to photographs taken in the X-ray spectrum of light.

Computed tomography (CT), originally known as computed axial tomography (CAT or CT scan) and body section roentgenography, is a medical imaging method employing tomography where digital geometry processing is used to generate a three-dimensional image of the internals of an object from a large series of two-dimensional X-ray images taken around a single axis of rotation. The word "tomography" is derived from the Greek tomos (slice) and graphia (to write). CT produces a volume of data which can be manipulated, through a process known as windowing, in order to demonstrate various structures based on their ability to block the X-ray beam. Although historically the images generated were in the axial or transverse plane (orthogonal to the long axis of the body), modern scanners allow this volume of data to be reformatted in various planes or even as volumetric (3D) representations of structures.

Although most common in healthcare, CT is also used in other fields, for example nondestructive materials testing.


Advantages Over Projection Radiography

First, CT completely eliminates the superimposition of images of structures outside the area of interest. Second, because of the inherent high-contrast resolution of CT, differences between tissues that differ in physical density by less than 1% can be distinguished. Third, data from a single CT imaging procedure consisting of either multiple contiguous or one helical scan can be viewed as images in the axial, coronal, or sagittal planes, depending on the diagnostic task. This is referred to as multiplanar reformatted imaging.


Regarding your question about the computing portion, X-ray slice data is generated using an X-ray source that rotates around the object; X-ray sensors are positioned on the opposite side of the circle from the X-ray source. Many data scans are progressively taken as the object is gradually passed through the gantry. They are combined together by the mathematical procedure known as tomographic reconstruction.

Newer machines with faster computer systems and newer software strategies can process not only individual cross sections but continuously changing cross sections as the gantry, with the object to be imaged, is slowly and smoothly slid through the X-ray circle. These are called helical or spiral CT machines. Their computer systems integrate the data of the moving individual slices to generate three dimensional volumetric information (3D-CT scan), in turn viewable from multiple different perspectives on attached CT workstation monitors.
CT scanner with cover removed to show the principle of operation
CT scanner with cover removed to show the principle of operation

In conventional CT machines, an X-ray tube and detector are physically rotated behind a circular shroud (see the image above right); in the electron beam tomography (EBT) the tube is far larger and higher power to support the high temporal resolution. The electron beam is deflected in a hollow funnel shaped vacuum chamber. X-rays are generated when the beam hits the stationary target. The detector is also stationary.

The data stream representing the varying radiographic intensity sensed reaching the detectors on the opposite side of the circle during each sweep is then computer processed to calculate cross-sectional estimations of the radiographic density, expressed in Hounsfield units. Sweeps cover 360 or just over 180 degrees in conventional machines, 220 degrees in EBT.

CT is used in medicine as a diagnostic tool and as a guide for interventional procedures. Sometimes contrast materials such as intravenous iodinated contrast are used. This is useful to highlight structures such as blood vessels that otherwise would be difficult to delineate from their surroundings. Using contrast material can also help to obtain functional information about tissues.

Pixels in an image obtained by CT scanning are displayed in terms of relative radiodensity. The pixel itself is displayed according to the mean attenuation of the tissue(s) that it corresponds to on a scale from -1024 to +3071 on the Hounsfield scale. Pixel is a two dimensional unit based on the matrix size and the field of view. When the CT slice thickness is also factored in, the unit is known as a Voxel, which is a three dimensional unit. The phenomenon that one part of the detector cannot differ between different tissues is called the Partial Volume Effect. That means that a big amount of cartilage and a thin layer of compact bone can cause the same attenuation in a voxel as hyperdense cartilage alone. Water has an attenuation of 0 Hounsfield units (HU) while air is -1000 HU, cancellous bone is typically +400 HU, cranial bone can reach 2000 HU or more (os temporale) and can cause artefacts. The attenuation of metallic implants depends on atomic number of the element used: Titanium usually has an amount of +1000 HU, iron steel can completely extinguish the X-ray and is therefore responsible for well-known line-artifacts in computed tomogrammes.




Powered by Yahoo! Answers

Title Post: what are some reverse engineering techniques?
Rating: 100% based on 99998 ratings. 5 user reviews.
Author: Yukie

Thanks For Coming To My Blog

No comments:

Post a Comment